

Answer to Question 1

Graph G has five vertices: v1, v2, v3, v4, and v5. Adjacency list can be used in the linked

representation to store graph G.

Algorithm to store the graph in the form of a Linked list in the memory:

• Adjacency graph representation of a graph 𝐺 = (𝑉, 𝐸), where V is the number of vertices

and E is the number of edges, consists of an array Adj of |V| lists.

• Adj consists of one list per vertex.

• The adjacency list, for each 𝑢 ∈ 𝑉, 𝐴𝑑𝑗[𝑢] contains all the vertices v such that there is an

edge (𝑢, 𝑣) ∈ 𝐸. This means, 𝐴𝑑𝑗[𝑢] consists of all the vertices adjacent to u in G.

Pseudocode:

#Initialize an empty

dictionary graph = {};

V1

1

V3

1

V2

1

V5

1

V4

1

Add_edge(u, v):

if u in graph { graph[u].append(v); } #add v to list of neighbors for u

else { graph[u] = [v]; } #create a new list with v as the first neighbor

Add_edge(V1, V2);

Add_edge(V1, V3);

Add_edge(V1, V4);

Add_edge(V1, V5);

Add_edge(V2, V3);

Add_edge(V2, V4);

Add_edge(V2, V5);

Add_edge(V3, V4);

Add_edge(V3, V5);

Add_edge(V4, V5);

Adjacency lists may also be implemented with pointers to the vertices. The adjacency lists

represent the edges of a graph. In the directed graph above, G, the sum of the lengths of all the

adjacency lists is |E|, since an edge of the form (u, v) is represented by having v appear in Adj[u].

The space complexity of the above algorithm is 𝜃(𝑉 + 𝐸).

 Adjacency List Representation:

Answer to Question 2

The degree of a vertex in a directed graph is its in-degree plus its out-degree. In-degree is the

number of incoming edges and out-degree is the number of outgoing edges of a vertex in a

graph. Queue data structure is used that follows first-in-first-out method.

Algorithm idea:

Step 1: Compute and initialize the in-degree for each vertex present in the Directed Acyclic

Graph with number of visited nodes = 0.

Step 2: Find all the vertices with in-degree = 0 and add them into a queue (perform enqueue

operation).

Step 3: Remove a vertex from the queue (perform dequeue operation) and then perform the

following –

1. Increment the count of visited nodes by 1.

V3 V5 V4 V2 V1

V
3

V
5

V
4

V
2

V
5

V
4V

3

V
5

V
4

V
5

2. For all the neighboring nodes, decrease in-degree by 1.

3. Check if in-degree of neighboring nodes are reduced to zero, then add it to the queue

(perform enqueue operation).

Step 4: Repeat step 3 until the queue is empty.

The count of the visited nodes must be equal to the number of nodes in the directed acyclic

graph.

Example :

Analysis:

Since the graph is acyclic, there must exist a vertex with in-degree = 0 and a vertex with out-

degree = 0.

0 1

2 3

4

Output: 0 3 4 1 2

We need a list for each vertex (in-degree). The construction of this linked list can be done in

𝑂(|𝑉| + |𝐸|) time. This means, Step 1, calculation of each in-degree can be done in

𝑂(|𝑉| + |𝐸|).The enqueue and dequeue operations can be done in constant time 𝑂(1) and we

have to do this for each vertex at least once. So, total time for queueing is 𝑂(𝑉). The insertion

and deletion of the doubly linked list can be done at 𝑂(1). We must perform this for each child

of each vertex at least one, so it has to be done |E| times. At each step we are outputting an

element with in-degree = 0, with respect to all the vertices that had not been finished.

Therefore, the total runtime is 𝑂(|𝑉| + |𝐸|).

Answer to Question 3

Algorithm:

Step 1: Explore G and generate an interval 𝐼𝑣: [𝑑(𝑣), 𝑓(𝑣)] for each node 𝑣.

Step 2: Generate a topological order of G.

Step 3: Generate an interval sequence for each node 𝑣 along the reverse of the topological order

as follows:

Let 𝑣1, 𝑣2, … , 𝑣𝑘 be the children of 𝑣.

Let 𝑆𝑖 be the interval sequence generated for 𝑣𝑖(𝑖 = 1, … , 𝑘).

Merge 𝑆1, 𝑆2, … , 𝑆𝑘 and 𝐼𝑣 to generate 𝑆𝑣.

Merge Operation of two interval sequences 𝑆1 and 𝑆2:-

Let 𝑆1 = [𝑎1, 𝑏1][𝑎2, 𝑏2] … [𝑎𝑙, 𝑏𝑙] and 𝑆2 = [𝑐1, 𝑑1][𝑐2, 𝑑2] … [𝑐𝑘, 𝑑𝑘]

Merge 𝑆1 and 𝑆2 to generate:

𝑆 = [𝑥1, 𝑦1][𝑥2, 𝑦2] … [𝑥𝑚, 𝑦𝑚] (topologically sorted)

Here, each [𝑥𝑝, 𝑦𝑝] is some [𝑎𝑖, 𝑏𝑖] or some [𝑐𝑗 , 𝑑𝑗] but each [𝑥𝑝, 𝑦𝑝] is not a subinterval of any

other [𝑥𝑞 , 𝑦𝑞] and vice versa.

V1 V
2

V
3

V
4 V

5

[1,10] [2,9] [7,8] [3,6] [4,5]

Merging 𝑆1 and 𝑆2 would store the result in 𝑆1.

Merge(𝑆1, 𝑆2):

𝑆1 = 𝑝1𝑝2 … 𝑝𝑙 = [𝑎1, 𝑏1][𝑎2, 𝑏2] … [𝑎𝑙, 𝑏𝑙]

𝑆2 = 𝑞1𝑞2 … 𝑞𝑚 = [𝑐1, 𝑑1][𝑐2, 𝑑2] … [𝑐𝑘, 𝑑𝑘] #Assuming that both of them are sorted in

increasing order according to the starting time points

Initially, 𝑖 = 1 𝑎𝑛𝑑 𝑗 = 1

V1 V
2

V
3

V
4 V

5

[1,10] [2,9] [7,8] [3,6] [4,5]

V1 V
2

V
3

V
4 V

5

[1,10] [2,9] [3,6][7,8] [3,6] [4,5]

#There are five possible cases:

Case 1: If pi.a > qj.c and pi.b > qj.d: insert qj into S1 after pi-1 and before pi and move to

qj+1

Case 2: If pi.a > qj.c and pi.b < qj.d: remove pi from S1 and move to pi+1. (*pi is covered by qj.*)

Case 3: If pi.a < qj.c and pi.b > qj.d, ignore qj and move to qj+1. (*qj is covered by pi; but it

should not be removed from S2.*)

Case 4: If pi.a < qj.c and pi.b < qj.d, ignore pi and move to pi+1.

Case 5: If pi.a = qj.c and pi.b = qj.d ignore both pi and qj, and move to pi+1 and qj+1, respectively.

Example:

pi

qi
pi

qi

pi

pi

pi

qi

qi

qi

S1 : [7,7][8,9]

S2 : [3,4][5,8][10,11]

S1 : [3,4][7,7][8,9]

S2 : [3,4][5,8][10,11] S2 : [3,4][5,8][10,11]

S1 : [3,4][7,7][8,9]

S1 : [3,4][7,7][5,8][8,9] S1 : [3,4][7,7][5,8][8,9][10,11]

S2 : [3,4][5,8][10,11] S2 : [3,4][5,8][10,11]

S2 : [3,4][8,5][10,11]

p p p

p p

q q q

q q

