Answer to Question 1

Graph G has five vertices: v_1 , v_2 , v_3 , v_4 , and v_5 . Adjacency list can be used in the linked representation to store graph G.

Algorithm to store the graph in the form of a Linked list in the memory:

- Adjacency graph representation of a graph $G = (V, E)$, where V is the number of vertices and E is the number of edges, consists of an array Adj of $|V|$ lists.
- Adj consists of one list per vertex.
- The adjacency list, for each $u \in V$, $Adj[u]$ contains all the vertices v such that there is an edge $(u, v) \in E$. This means, $Adj[u]$ consists of all the vertices adjacent to u in G.

Pseudocode:

#Initialize an empty dictionary graph $= \{\}$;

Add_edge (u, v) :

if u in graph { graph[u].append(v); } #add v to list of neighbors for u else { $graph[u] = [v]$; } #create a new list with v as the first neighbor Add_edge(v_1 , v_2); Add_edge(v_1 , v_3); Add_edge(v_1 , v_4); Add_edge(v_1 , v_5); Add_edge(v_2 , v_3); Add_edge(v_2 , v_4); Add_edge(v_2 , v_5); Add_edge(v_3 , v_4); Add_edge(v_3 , v_5); Add_edge(v_4 , v_5);

Adjacency lists may also be implemented with pointers to the vertices. The adjacency lists represent the edges of a graph. In the directed graph above, G, the sum of the lengths of all the adjacency lists is |E|, since an edge of the form (u, v) is represented by having v appear in Adj[u]. The space complexity of the above algorithm is $\theta(V + E)$.

Adjacency List Representation:

Answer to Question 2

The degree of a vertex in a directed graph is its in-degree plus its out-degree. In-degree is the number of incoming edges and out-degree is the number of outgoing edges of a vertex in a graph. Queue data structure is used that follows first-in-first-out method.

Algorithm idea:

Step 1: Compute and initialize the in-degree for each vertex present in the Directed Acyclic Graph with number of visited nodes $= 0$.

Step 2: Find all the vertices with in-degree $= 0$ and add them into a queue (perform enqueue) operation).

Step 3: Remove a vertex from the queue (perform dequeue operation) and then perform the following –

1. Increment the count of visited nodes by 1.

- 2. For all the neighboring nodes, decrease in-degree by 1.
- 3. Check if in-degree of neighboring nodes are reduced to zero, then add it to the queue (perform enqueue operation).

Step 4: Repeat step 3 until the queue is empty.

The count of the visited nodes must be equal to the number of nodes in the directed acyclic graph.

Example :

Output: 0 3 4 1 2

Analysis:

Since the graph is acyclic, there must exist a vertex with in-degree $= 0$ and a vertex with out $degree = 0$.

We need a list for each vertex (in-degree). The construction of this linked list can be done in $O(|V| + |E|)$ time. This means, Step 1, calculation of each in-degree can be done in $O(|V| + |E|)$. The enqueue and dequeue operations can be done in constant time $O(1)$ and we have to do this for each vertex at least once. So, total time for queueing is $O(V)$. The insertion and deletion of the doubly linked list can be done at $O(1)$. We must perform this for each child of each vertex at least one, so it has to be done |E| times. At each step we are outputting an element with in-degree $= 0$, with respect to all the vertices that had not been finished.

Therefore, the total runtime is $O(|V| + |E|)$.

Answer to Question 3

Algorithm:

Step 1: Explore *G* and generate an interval I_v : $[d(v), f(v)]$ for each node v .

Step 2: Generate a topological order of G.

Step 3: Generate an interval sequence for each node ν along the reverse of the topological order as follows:

Let $v_1, v_2, ..., v_k$ be the children of v .

Let S_i be the interval sequence generated for v_i ($i = 1, ..., k$).

Merge $S_1, S_2, ..., S_k$ and I_v to generate S_v .

Merge Operation of two interval sequences S_1 and S_2 :-

Let $S_1 = [a_1, b_1][a_2, b_2] ... [a_l, b_l]$ and $S_2 = [c_1, d_1][c_2, d_2] ... [c_k, d_k]$

Merge S_1 and S_2 to generate:

 $S = [x_1, y_1][x_2, y_2] ... [x_m, y_m]$ (topologically sorted)

Here, each $[x_p, y_p]$ is some $[a_i, b_i]$ or some $[c_j, d_j]$ but each $[x_p, y_p]$ is not a subinterval of any other $[x_q, y_q]$ and vice versa.

Merging S_1 and S_2 would store the result in S_1 .

Merge (S_1, S_2) :

 $S_1 = p_1 p_2 ... p_l = [a_1, b_1][a_2, b_2] ... [a_l, b_l]$

 $S_2 = q_1 q_2 ... q_m = [c_1, d_1][c_2, d_2] ... [c_k, d_k]$ #Assuming that both of them are sorted in increasing order according to the starting time points

Initially, $i = 1$ and $j = 1$

#There are five possible cases:

